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ABSTRACT I 

Equations governing small deformation of 8 cylindrical Sandwich Shell 

are derived from the principle of Minimum Potential Energy. The facings are 

thin orthotropic shells with different physical properties and thicknesses, 

and a weak orthotropic core is considered. 'Ihe effect of an arbitrary 

temperature distribution is included. Two examples are presented: (1) 

uniform heating of a finite segment of a shell of infinite extent (elastic 

core) and (2) uniform heating of a shell of infinite extent (viscoelastic 

core) supporting a ring load. 
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1. Introduction 

A recent survey by Habip [1] of developments in the analysis of sand- 

wich structures, including shells, has disclosed that rather limited attention 

has been paid to thermoelastic or viscoelastic shell problems. 

Although the theory of sandwich structures is dated from at least 1940, 

the temperature effect apparently was not considered until 1959. At that time 

a paper by Bijlaard [2] was published; he assumed a constant temperature 

gradient between the facings, found the equivalent moment and calculated 

the corner forces for a simply supported rectangular plate, dealing only with 

the gross magnitudes of the plate. No stress calculations and no constitutive 

equations are shown. The usual Reissner sandwich plate assumptions were made, 

taking into account the shear in the core and considering only small 

deflections. Yao [3] considered a cylinder of 3 thin layers (all 3 considered 

as membranes), the inner one having different elastic properties. Applying 

the Cross iteration procedure he achieved compatibility of the displacements 

between the layers and calculated the resulting deformations. Since moments 

are not considered in this method it must be regarded as a very rough approxi- 

mation. 

Kendall et al., [4] proposed a method for predicting thermal response 

in sandwich plates and a few additional refereces may be found in [l]. 

A treatment of the thermoelastic equations for sandwich plates appears 

in the work of Chang and Ebcioglu {5]; assuming the Duhamel-Neumann stress- 

strain law they derived differential equations for sandwich plates from the 

principle of Minimum Potential Energy. Further assumptions are: 
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small deflections, facings are isotropic membranes, the orthotropic core 

transfers only transverse shear stresses and is incompressible in the normal 

direction. Chang's results of compression tests on sandwich plates with 

facings kept at different temperatures are published in [6], but no math- 

ematical treatment is attached. In [7] Ebcioglu repeated the equations of 

[5] by means of the usual kinematic and equilibrium considerations but in- 

cluded an arbitrary temperature distribution. He took into account transverse 

normal strain and surface stress couples and arrived at a complete set of 

equations for the thermoelastic behavior of a sandwich plate. In [8] the 

above theory was extended for large deflections and rotations. This paper 

constitutes the most general treatment on sandwich plates available at present. 

The following three papers dealing with plates were inaccessible to the 

author: in [9] a general treatment of sandwich plates is given, and [lo] 

and [ll] deal with the thermoelastic vibrations of a sandwich plate. 

A work of generality comparable to [8] for shells has not appeared. 

The papers [12] by Grigoliuk, [13] by Vasitsina and [14] by Mushtari are on 

the level of [5] and [7] but are limited to shallow shells with constant 

transverse normal displacement in the core. 

The viscoelastic behavior of a sandwich plate is treated for the 

first time in [15]: from a generalized Hamilton's principle Chang obtained 

the three differential equations of motion in the Laplace space; only 

vibrations are studied, no load cases. The ordinary Reissner sandwich plate 

assumptions are made together with small deflections. 
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Yu [16] studied equations for the frequency of damped vibrations of a 

sandwich plate in great generality, without showing how the concept of visco- 

elastic damping fits his assumption of perfect elastic materials. 

Baylor [17] presented a general theory of anisotropic viscoelastic 

sandwich shells in coordinate invariant tensor notation and took into account 

kinematic refinements but limited to small deflections. As an example he 

investigated the infinite circular cylinder with viscoelastic ore under a 

ring load. Other than this example, no treatment of sandwich structures with 

a viscoelastic core could be found. 

In Section 2 the principle of Minimum Potential Energy is used to 

obtain the displacement equations of equilibrium for cylindrical shells. 

The derivation follows the procedure given in [5] and the results are 

presented as in [16], although the 3-term expansion for the transverse dis- 

placement, the orthotropy of the material, and the inclusion of the temp- 

erature gradient makes the variation more complicated. The core material 

is allowed to be viscoelastic with temperature dependent material properties. 

Only small deflections are considered; strains and rotations are small 

compared with unity, and the following expressions for the displacements are 

used: 

lLCx,G,r) - vcxp) + 2% (X,Q), (1) 
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Surface loads and couples are also considered in the equilibrium equations. 

The displacement assumption (1j3 generalizes the work reported in [12], [13], 

[14] in the sense that core compressibility is permitted, although large 

displacements are excluded. 

In Section 3 examples show the deflection under a spatial distribution 

of temperature for a sandwich cylinder and the deflection under uniform 

heating for a sandwich cylinder carrying a ringload. Solutions are obtained 

by means of integral transforms and a viscoelastic core is considered in the 

second example. 

The principle of Minimum Potential Energy is needed in the sequel and 

appears here for reference: 

The first integral contains the strain energy in terms of the displacements 

and temperature; variation with respect to the displacements yields the 

displacement equations of equilibrium. The second integral consists of the 

integral Wl over the surface and the integral W 
2 

along the edge: 

4 
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Variation of Wl yields the load terms, variation of W2 the natural boundary 

conditions for the shell stress resultants. 

2. Equations for an Elastic Cylindrical Sandwich Shell 

2.1) The contribution of the facings to the strain energy and to the 
Euler equations 

The shell facings are assumed to be in a state of generalized plane 

stress. In this case the constitutive law for an orthotropic material [18] is: 

where: 

C I3 =o 

c 13 =o 

c33 =-o 

c 'IY =O 

css =o 

(4) 
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Introducing temperature change T through the Duhamel-Neumann con- 

stitutive law, we have 

(6) 

Accordingly, the stress-strain relations including the temperature strain for 

an orthotropic material can be written 

El -c,,= - 
l-Y,-& Y&m) -Cd, , 

Using the abbreviations (0~ ,+v2do) %dT, 1 

and 
E2 VI 
E, Y2 

&xz+Y,d,)T= ATa , 

(7,) 

the expression for the strain energy per unit volume in generalized plane 

stress becomes 

(8) 
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The strain-displacement relations in cylindrical coordinates are 

(9) 

We denote all quantities of the upper facing by a prime and all quantities of 

the lower facing by two primes. After having introduced (9) in (8) we obtain 

the total strain energy of the facings by integrating over the thicknesses h' 

and h", summing, and integrating over the surface: 

Using (l), continuity of displacements at interfaces requires that 

(12) 

7 
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Considering (10) and (12) we find from (11): 
E’h’ =)a 

2 (I -Y,‘v;) 

This result agrees with the linearized expression given in [24] for a 

homogeneous shell. 

A short remark should be made on the displacement assumptions: the 

a-term assumption for u and v enables us to include shear effects in the core - 

and-we are on the same level as Reissner's refined theory. The Kirchhoff- 

Love assumption 9 
= -w,x and % = -w,@ does not allow this refinement. The 

3-term assumption for the transverse displacement enables us to study a 

linear variation of the normal strain and introduces constitutive equations 

for the transverse shear and normal stresses. The importance of this type 

of transverse displacement assumption for sandwich shells has been mentioned 

by Reissner [25]. 
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The Euler equation associated with a typical variable u in the above 

is: 

(14) 

Thus, we obtain seven partial differential equations (in part) by variations 

of the strain energy (13) with respect to u,v,w,+,%,q, and% 

convenient to define: 

It is - 

7" > 

. 

(15) 

to factor out E' h'/i (I - I@;) f rom all equations and to use the expansions: 

After some lengthy computations and comparisons it was found that the 

following procedure must be adopted in order to be able to reduce to Flugge's 

differential equations of a homogeneous cylindrical shell: C2/4 must not be 

neglected in comparison with 1 if it stands with u,v,w or their derivatives, 

but it is neglected if it stands with $)'" or their derivatives. The 

differential equations of a homogeneous cylindrical shell according to 

Vlasov are obtained if t2/4 is neglected in comparison with 1 if it does 

9 



not stand with W. The Donnell accuracy will be reached by neglecting t /2 

and t 2/4 compared with 1 consistently if it does not stand with w. Re- 

taining the Fligge order of approximation the contributions of the facings 

to the Euler equations are: 

(18) 



2.2) The Contribution of the Core to the Strain Energy and to the Euler 
Equations 

The core is assumed to transfer only transverse shear and normal 

stresses. Upon setting the in-plane stresses equal to zero we have the 

material constants 

GX = c44 

Ge = c55 

Ez = c33 

11 



and the constitutive law 

The strain energy per unit volume in the core can be written as 

(23) 

(24) 

We draw the strain-displacement relations from [24]: 

The total strain energy in the core is the integral over the volume: 



where thesekdefinitions were used in (26) 

I 

h 

Variation of (26) with respect to the displacements, defining 

I== E+ Ll (I- -u,‘lg) 
E’L\’ > 

and multiplying all equations by 

the contributions of the core to the Euler equations 

(27) 

(28) 

1 

are found to be: 

(32) 
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2.3) er Equations and .-. - ~ ~- 
the Resulting Displacement Equations of Equilibrium 

The variation of the work of the external forces on the cylindrical 

(35) 

boundary with respect to the displacements contributes the load terms: 

-w,= T;qG&de Ti = prescribed traction on the 
cylindrical surface 

In this case the prescribed tractions are the external loads that are applied 

on the upper and lower facing. The work reads: 

-w,= - UK p,: cu+$& + & b+ i$ %) +p: cut $ p +g IL)]. 

. c\t g+~xYu-h,,) +Pi++L.) +p&dlcy+ (36) 

+ g x,-j ( \- vz. \ a CJd @ 

We now define surface load resultants and surface couples in the following 

manner: 

(37) 
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Upon introducing the symbols 

and upon taking the variation 6W1=0 we obtain the load terms: 

(38) 





These equations comprise a set of Fliigge-type equations for an orthotropic 

sandwich cylinders with a weak core, in the presence of temperature gradients. 

The displacement functions u,v,w, 4 , $ ,X , >c appear as unknowns. Further 

specilizations appear in Section 3. 

2.4) The Natural Boundary Conditions 

2.4.1) The stress boundary conditions 

The expression for the work W2 of the edge tractions in the variational 

integral is a contour integral: 

(47) 

Introducing the components of the traction and the expression for the dis- 

placements (1) the work W2 becomes: 

vi,= z~A + taln~+t31%)(ti+t f5) + (z,~v~, 



We now define stress resultants in the usual manner: 

N 

(49) 

and arrive at an expression for W 2 : 



Performing the variation with respect to the displacements, 5 W2 = 0 yields 

the natural stress boundary conditions: 

N, ~x+btwe + Qw2= 5, 7 these quanities must be 
prescribed at x=const., 

Mxr mx + MxQ % = Rx, (51) 
&const. 

2.4.2) The displacement boundary conditions 

Displacement boundary conditions are obtained by variation of the 

total external work on the shell with respect to the Stress resultants. The 

total work is W1+W2 and follows from (36) and (48): 

w= I*\?, 
0 0 

Uf %P+ +?ea +tigK tp,(W+~1)+ 
d 

t q+dxde + k hxb +kJkJ +&n&L+ 
0 

+bc?@ +QQ%)u+ (Mew~x +M&‘e) $1 dx . 

After variation we have the displacement boundary conditions: 

(53) 

(The bars indica.te that the quantities must be prescribed in this manner.) 

l.9 



2.5) The Stress-Displacement Relations 

we substitute the strain-displacement relations (9),(12), an! (25) 

into the stress-strain relations (12) and (231, obtaining: 

(54) 

(55) 

(56) 

(60) 

(61) 

(62) 



2.6) The Stress Resultant Displacement Relations 

Inserting the stress-displacement relations (54)-(62) in the 

definitions for the stress resultant expressions (49); we obtain: 

(63) 

(64) 

(65) 

(67) 

21 
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(72) 

(73) 

Equations (63)-(73) constitute the set of stress variables for the shell. 

2.7) The Equilibrium Equations 

The equilibrium conditions can be found by variation of the comple- 

1 mentary energy with respect to the displacements. For linear materials the 

complementary energy is equal to the strain energy expressed in terms of 

stress resultants times displacements. The stress-resultant displacement 

relations are introduced as Lagrange multipliers. The procedure follows 

that described in [28]. 

22 



We now express (74) in terms of stress resultants times displacements using 

the relations (63)-(70). The sub-bars of the Lagrange multipliers indicate 

that the stress resultants are to be expressed in terms of displacements and 

that the temperature terms must be doubled since they are not multiplied by 

l/2 in the expression for the strain energy in (8). Thus, the strain energy 

plus the Lagrange multipliers reads: 

(75) 
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Performing the variation and allowing the Lagrange multipliers to assume the 

values 

)A=+4 ) 
r 

3’L*)Q 1 P 
rs" 4x ) p7': 4,s , 

(76) 

)" 2' 3% ) Pq 
= v,e+w+ ~dx , 

8 r 
(I-Y,% , 

r 
7=Q+(tr7 

we obtain the seven contributions to the equilibrium conditions: 

(77) 

5 v: -Nxe,x - +iN ee,B J (78) 

(79) 

(81) 

(82) 

(83) 



2.7.2) The contribution of the core 

In view of the weak core assumption, the first equilibrium equation 

for the core requires: 

a s (\t g)-b L 1 =o, 
and recalling the definition for the shear resultant we find: 

Qx I 
T3= -c;- \+ +. . k 

Similarly, the second equilibrium equation for the core is 

(84) 

(85) 

(86) 

This enables us to write the shear stress in terms of the shear resultant: 

Ic23 = 
Q* I-$ 

-ii- (I tg2 ' (87) 

(see [20]). The entire complementary energy in the core is in accordance 

with (24) 

25 



As before, we integrate 

Lagrange multipliers: 

over the thidkness of the shell and include the 

Variation with respect to the displacements gives the values of the Lagrange 

multipliers 

PO = 7-4 & (b)S-v) 7 plz’ $i qtax) 7 f,3= $ ax , (‘O) 

and the contribution of the core to the equilibrium conditions: 

(91) 

(92) 

(93) 

(94) 

26 



(95) 

(96) 

2.7.3) The contribution of the external loads and the resulting 
equilibrium equations 

Following the same procedure as in Section 2.3 we obtain the load terms 

(97) 

as in (39): 

-Px, -Pe, -Pa, -w,) -%, -MS) -g pp l (98) 

Summing up the contributions (77)-(83), (91)-(97) and (98) yields the Complete 

equilibrium equations for a cylindrical sandwich shell: 

i 
,.’ 

-. 

7. 

, 

, . ; 

: 

(99) 

(100) 

(101) 

27 



(102) 

(104) 

Note that we find seven equilibrium equations in our problem although only 

five normally would be expected (the sixth one concerning rotation about the 

z-axis is satisfied identically). Indeed equations (99)-(103) are the five 

usual equilibrium equations. (104) and (105) result from variation of the 

strain energy with respect to the linear and quadratic term in the expansion 

for the transversal deflection w,and these two equations represent the linear 

and the quadratic change of the forces in z-direction when proceeding from one 

facing to the other through the shell. If we assume incompressibility of 

the shell in the z-direction, then the above system of equations reduces 

to that in [20] in the case of a small deformation of a homogeneous cylindrical 

shell. As will be seen in the sequel, an analogy exists between the equations 

for a class of sandwich shells and those for a homogeneous shell, provided 

proper definitions of the stress resultants are introduced. 
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The correctness of the above equations was checked by substituting 

(63)-(73) in the stress equilibrium equations (99)-(105). The- resulting dis- 

placement equations of equilibrium agreed with (40)-(46) except in terms of 

higher order in the last two equations. This is due to the fact that the 

core equilibrium equation is contained in (104) and (105), giving an equation 

for the shear resultant, while the other stress resultants are pure definitions. 

This is of course an inconsistency in the theory that cannot be avoided. 

Since the differences are only in the higher order terms, no importance is 

attached to this peculiarity. 

In concluding this section it should be noted that a single application 

of the Hellinger-Reissner. variational theorem could have been employed to 

obtain the stress resultant equations of equilibrium and the stress resultant- 

displacement equations, although this procedure produces displacement-stress 

resultant equations and stress resultant equilibrium equations; hence further 

algebra is required to obtain results presented here. 

3. Applications of The Theory 

The purpose of this section is to illustrate how the equations obtained 

in Section 2 reduce to well-known results for special cases. In addition, 

examples are given which illustrate the use of the equations in order to 

study viscoelastic effects in the core, as well as temperature effects in an 

elastic sandwich shell. 



3.1) The Equations for a Homogeneous Cylinder under the Kirchhoff-Love 
Assumption 

For a shell whose material is isotropic and with facings that are 

similar, the following specializations are introduced. All constants with 

the index 2 are set equal to zero (Eq. (15) ). Shear effects are neglected 

(all terms containing the core shear modulus are discarded). The material 

(106) 

(107) 

(108) 



Equations (45) and (46) vanish. For isotropic similar facings we find 

A,-c,=z , T,,- r,, s (~++Gvt> 

B,-zy ) T;z' L = [I+*) 4 AI-, 

Z&+6, = 

The Love-Kirchhoff assumption for displacements implies that 

4 --w,,x , (111) 
c)c= -k cL3,*--v) l 

In view of (111) the Euler equations (14) also have to be changed. From [18] 

setting the variation of the integral 

equal to zero is equivalent to 

which now replaces (14) and succeeding variations with respect to displacement 

variables 4 and x . . In our case the Euler equations can be obtained by 

combination of 

(106) 

(107) + (110) 

(108) +a (109)ix + (110),6 
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Multiplying (106)-(110) by a2/4 we get, after some computation, the equations: 

b,e - c’+v) +[a2z (AT+ 3 T&,),xx + 

-c AT,ee-L,- +Yz 1 
If we define an extensional stiffness D and a bending stiffness K 

0 = ZE’L’ u = E’w12 
\-VZ 1 

UC\-Y2) ? 

and if we consider that .____ ='f '= 2 K 
a20 ' q 

, and %2 p; = azp: , 

D 
then we find complete agreement with the homogeneous shell equations in [19], 

pg. 471. In addition our equations contain surface couples and allow an 

arbitrary temperature distribution. We see again that the equations of an 

homogeneous shell and of an isotropic sandwich shell are identical under proper 

32 



definitions of the stiffnesses. It is understood that Y is the Poisson's 

Ratio of the facings; therefore the prime is omitted. The stress-resultant 

displacement relations also agree with those given in [19], pg. 469/70 Eq. 

(1195): 

(115) 

(116) 

(117) 

(118) 

(120) 

(121) 

(122) 

33 
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3.2) The Sandwich Plate Equation According to Reissner's Refined Theory 

Assuming that the facings are similar and the material is isotropic, 

we specialize equations (40)-(44) as follows: 

a9=y, g=o, c==o, 

l/a =o fi x= 0. 

Since we again assume the sandwich structure to be incompressible in the 

transverse direction, (45) and (46) vanish. Hence 

24, u,xx 7 

3 

(123) 

(124) 

(125) 

(126) 

s - s tix + aTIZ,, 7 

We introduce the constants as on pg. 19 and additionally set 

34 



As a result we find two equations describing the in-plane behavior of the 

plate: 

(l+Y) u,xy + c4 *,xX t% qyy = -Py tall+4 * 7w,Y - 

(128) 

(129) 

and after lengthy manipulations the governing differential equation for the 

transverse deflection: 

VL- t+‘YV\x,x V2p,)- F ocV2AT . (130) 

This equation agrees with Resinner's linearized Eq. (70) in [26], with 

Reissner's Eq. (79) in [25], with Cheng's Eq. (33) in [27] and the temp- 

erature term agrees with Melan-Parkus' Eqn. VII, 9 in [21]. The inclusion 

of the surface couples and of the temperature terms is new and makes the 

equation more general. The expression E'h'h 
3 Cl--Yz) G, 

is the ratio of bending 

stiffness to shear stiffness. By inspection we see that (130) agrees with 

the classical plate equation in two cases: (1) if the shear stiffness is 

infinite (implying the Love-Kirchhoff assumption) (2) if the Laplace operator 

of the external load vanishes. For a circular plate with a central hole 

under a uniform shear load at the inner edge (meaning vzpp 0 ) it can be 

shown that the stress resultants agree with those of the classical theory but 

the deflections do not, being dependent on the ratio of bending stiffness to 

35 



shear stiffness and hole diameter to plate thickness as well. This result is 

interesting since one might expect the entire solution to agree with classical 

theory for this case. In [34] Kao investigated a circular sandwich plate 

under a linearly varying load and obtained similar results but he did not draw 

any further conclusions: 

A set of ten stress-resultant displacement equations belong to (128)- 

(130) but are omitted as they can be derived from (63)-(72) easily. 

3.3) The Plane Strain Problem for a Cylindrical Shell under Axisymmetric - --- --~ _ -- 
Load and Temperature Distribution 

Consider an orthotropic sandwich cylinder under a state of plane strain 

in the &-plane. We set: 

We arrive at a set of three algebraic equations for the unknown displacement 

components w, + , and X . A solution is found easily by the determinant 

rule and the stresses follow from the stress displacement relations. From 

(42), (45), and (46) can be derived: (the other equations vanish identically) 

36 



3.4) Axisymmetric Problems for a Cylindrical Sandwich Shell with's 
Viscoelastic Core 

In the interest of algebraic simplicity we assume isotropic similar 

facings, an isotropic core, and axisymmetric loads (mechanical and thermal). 

From (40)) (421, (431, (451, and (46) we obtain (the other equations vanish): 

37 



In order to study viscoelastic effects (limited to the core) we have to replace 

the constitutive equations for the core by other equations that describe the 

viscoelastic behavior. We utilize the integral constitutive law which is 

derived from Boltzmann's superposition principle: 

J 
t 

‘tl3 .- 
0’ 

& b-t’) ‘* dt’ , 

I 
t 

523' 
a& 

0' 

4‘ cm 'F cl-f 1 (139) 

We then apply the Laplace transform for the time coordinate. By observing the 

Laplace transform of a convolution integral we find the Laplace transform of 

where at rest initial conditions are assumed. Thus all products of core 

modulus times displacement are convolution integrals.. Denoting the Laplace 

transform of a quantity by an asterisk,as above,the five partial differential 

38 



equations of equilibrium in Laplace space are: 

c(b&x +x q: )+tb- &Y +x M;x,-- p;: t WY) d cTzJx t+ AT;x) , (140) 



In order to obtain equations that can be handled without excessive numerical 

work we drop (143) and (144), implying incompressibility of the shell in the 

transverse direction. We then tried to find a single governing differential 

equation which could be used to study various effects on the cylinder. The 

following steps were undertaken: 

a) All terms of order c 
2 

were dropped. This meant that all bending terms 

were eliminated and that only uniform heating or uniformly distributed 

loads could have been studied. 

b) The Kirchhoff-Love assumption was made: 4 = -w,x. This meant that all 

terms containing the core shear stiffness vanished. No viscoelastic 

effects could have been studied. 

c> The shell was assumed to be restrained in x-direction, It was found that 

the governing differential equation was not simpler than that one obtained 

under d), but much less general. 

d) No terms were dropped at all. The governing differential equation was 

obtained by a procedure to be shown subsequently. The manipulation 
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yields the governing differential equation for a cylindrical sandwich shell 

with axisymmetric load and temperature distribution and including viscoelastic 

shear effects in the core: 

(145) 

In addition there results 

-a W&T +&(\-zh) A$c~ )] . 
Equation (146) is the differential equation for an elastic shell with elastic 

core and can be checked in the following manner: 

The equations (112) and (113) are in the case of axisymmetry: 

By performing the operation 

(147) 

(148) 
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and by letting the shear modulus approach infinity (D-VOO ) in (146) we find 

two identical equations. The term w,xx is small compared with a 2tKxxx and 

w/a2Z2 and can be neglected. This leads to the well known differential 

equation for axisymmetric deformation of a cylindrical shell and solutions are 

of the same type as the solutions for a beam on elastic foundation. 

3.5) Example: Spatial Distribution of Temperature in an Elastic 
Sandwich Cylinder (elastic core) 

As an example consider an isotropic elastic sandwich shell with 

temperature independent material properties. 

Equation (146) is used to study the effect of heating the shell along a 

distance 2aT. The temperature is assumed to be uniform through the thickness 

and no external loads are considered. The integral transform technique is 

used to solve the differential equation, in particular the Fourier transform. 

Regularity requirements are satisfied as w and all its derivatives vanish for 

x approaching infinity. Upon setting: Pz = 0, T = 0, Tm = T' we obtain 

from (146): 

The Fourier transform of the temperature distribution is: (see Fig. 3) 
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A 

where c ) denotes the Fourier transform defined by 

The expression for the radial deflection in the transform space is: 

(150) 

By defining a dimensionless coordinate 

we can rewrite (150): 

Ls 4 &-ue)d~’ 
b.L=- 

(151) 
D 

The denominator that is needed to find the inverse transform is of the form: 

where 
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The deflection is found by taking the inverse transform 

%= & i"i ~)cm( i+=hj = 
0 Q (152) 

r L \ 

=- L(I\-Y%U dpwcx7) (112- $%) 

2 

DT i 0 
The expression is rewritten as 

;r(y-r=)(01*+ a=) 

The inverse transform of "I must be found separately for x 7 a T and x c a 
T' 

Using [23], pg. 19 and auxiliary quantities .i 

we find 
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The 

(155) 

and at the origin: (X=0) 

(156) 

It can be noted that the solution damps out for x-00 . Similarly an inverse 

transform is found for x c a 
T 

: 
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with the solution 

The value of (158) at the origin, 

(159) 
_ g-t 

(-P[-faZG A] i.-~iiiFX A] )] 3 

agrees wi=G;. For X-w& , corresponding to uniform heating of the 

shell, we obtain from (159) 

The same solution can be obtained from (145) if we drop all derivatives: 

(160) 

(161) 
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On the other hand (131) yields a different result since we assumed plane 

strain. In that case: 

(162) 

The deflections represented by (155) and (158) are plotted under the assumptions: 

Computation of the quantities 

r3- -3.oLt , /-$y = 13.70 ) g- 0.2Ll9442 ) 

C- 

leads to the 

w/a 
2dT’ 0.2498 

The value of the deflection for x+x is given by: 

0.1 0.3 0.5 0.7 0.9 1.0 1.1 1.2 1.5 2.0 

0.2497 0.2498 0.2546 0.2578 0.2016 0.1250 0.0484 0.0057 0.0038 0.0001 

(1‘3) 



We now consider response due to a temperature at the origin. From (158) we 

have the expression 

which vanishes for X=0 clearly because the heated length is set equal to 

zero. If we wish to examine ring heating of the cylinder we have to perform 

a limiting process. We assume that the temperature does not increase ad 

infinitum at the origin; thus 

1-’ x= const. T, , 

and L-w 
X-0 

T’ 1 lx, 1) = L& 
X-0 

Furthermore,observing that 

we obtain the inverse transform of ?: 

and the solution for ring heating of the shell: 

. (165) 
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The deflection at the origin is: 

(166) 

Evaluation of (165) leads to the table of values of w/2ad To below (see also 

Fig. 5): 

X - 
a 0 I- 0.1 0.2 0.4 

w/a 
2ot To 1.674 1.223 0.522 -0.062 

3.6) Example: Uniform Heating of a Cylindrical Sandwich Shell With 
a Ringload at the Origin (Viscoelastic Core) 

We consider a shell with a viscoelastic core whose temperature de- 

pendence is that of a thermorheologically simple material. 

The study of temperature effects in viscoelastic materials makes 

sense only when we take into account the temperature influence on material 

properties. The following treatment is drawn from references [29] - [33] 

and a solution found in a manner similar to [17]. We start from (145): 

(167) 



under the assumptions: T =‘I'= 
m T(t) only 

AT=0 

pZ 
= PZ(x).H(t) 

do&is called the pseudo-temperature, defined by 

T(t) 

do& $(~l)dT’ , 

T, where T 
0 

= reference temperature. 

We now focus our attention on the linear integral operator D: 

D-&i t G&-t ; T) &I { 1 dt’. 
--8 

For thermorheologically simple materials it is possible to introduce a 

transformation such that D(t,T) = D(F ), where 

0 

(T) is called the shift function and must'be adduced experimentally 

for a given material. Thus the operator D can be transformed to 

and we denote all functions in which t is replaced by $ by 

where 3 is called the reduced time. 



I 

The solution of (167) can be separated into two parts: 

This leads to the equations 

(168) 

(169) 

and 

After applying the Laplace transform with respect to-the reduced time 

(169) reads 

and has the solution 

(171) 

i&= \=Yz 
bC\-*=+ q, *oe $ 

(172) 

which represents the solution for uniform heating. Applying the Laplace 

transform to (170) 
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and subsequently the Fourier transform, 

gives an algebraic equation for the deflection. With the transform of the 

ringload 

(174) can be solved for the deflection: 

We now specialize the operator D to that of a standard solid (see Fig. 6): 

(relaxation modulus of a standard solid) 

where 
7' 

= viscosity? 

relaxation time. 

Assuming 

we find 

(176) 

PY= 0. 2oJ 0.832 + 
P P++ ’ 
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and after introduction of a dimensionless coordinate 7 
= as, (175) becomes: 

The inverse transform was found in [23], pg. 299: 

4)c 
WI -q2- 2Goo 

m =- 
y- My2 +4101 -c 

l-oq(+f -5.q^12tqlol) (%I4 - \r,.qr’ +4m) o-2 - o.+ t 

(178) 

Observing that G1 is an even function in 
7 

it is seen that 

(179) 

Expanding the exponential function 

in a power series and comparing the integrals which result from substituting 

(178) and the power series of (180) into (179), it is seen that in approxi- 

mating (180) by exp(-0.2 y/r ) only a term of order 10 
-3 

as compared to one 

is being neglected when Q-i k 15. With this approximation (178) reduces to 

AY 
w -T2- aboO -0.2% 

-I - 
G= PO r.oq+ \6-4 3=+ qw1) 

(\-e ) - (181) 

53 



The inverse Fourier transform of (181) was found completely analogous to that 

of the first example (165) and the intermediate steps are therefore omitted. 

Thus we obtain the part of the deflection due to the ringload: 
A 
WI = qk EX&#Eqg 

=-c- nit \IL(C, 

The first part of (182) represents the long term solution, the second part the 

instantaneous deflection. A time profile at the origin and a longitudinal 

profile at 4 /Z = 0.1 were computed. Using the assumptions (176) we find 

Table of the time profile (plot see Fig. 7): 

4/, 0 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 00 

A 2 w/a PO 9.297 9.304 9.311 9.332 9.365 9.420 9.533 9.620 9.664 9.670 9.677 

It is seen from Fig. 7 that the simplification of the result for %/,>15 is 

fully justified. Table of the longitudinal profile (plot see Fig. 8): 

x/a 0 0.05 0.1 0.2 0.5 

$/a2Po 9.304 8.445 6.582 2.724 -0.385 



We can see from the time profile that the influence of the viscoelastic 

core on the deflection is about 496. It can be concluded therefore that the 

influence of the viscoelasticity of the core can be neglected in the 

computation of stresses and deformations of a sandwich structure. This is 

only valid within the scope of the above assumptions for the geometric and 

material properties. This statement is not valid for very weak cores as the 

assumption of small deflections is void in this case. Furthermore, the result 

would be expected to depend on the magnitude and time dependence of the 

transverse relaxation modulus of the core,which in this case is assumed to be 

infinite. 
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I 

J L ‘i 
c3 

‘Co 

X 

Fig. 1. Cross-Section of a Cylindrical Sandwich shell 

Fig. 2. Composite Shell Element 

, 
L, c> 

‘C’ 

The elasticity sign convention is adopted. (Differs from 
Timoshenko's and Girkmann's sign convention.) 
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Fig. 6. Viscoeiastic Core Behavior (Standard Solid) 

Fig. 3. Temperature Distribution on the Shell 
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0.25 

Spatial distribution of temperature on 
an elastic sandwich cylinder. The 
material properties are independent of 
temperature. 

Fig. 4. Longitudinal Profile of the Transverse Deflection 



C 

Ring heating of an elastic sandwich cylinder. 
The material properties are independent of 
temperature. 

I I 
0.1 0.2 0.3 1 0.5 x 

0 

Fig. 5. Longitudinal Profile of the Transverse Deflection 



Uniform heating of a sandwich cylinder in 
addition to a ringload. The viscoelastic 
core has temperature dependent properties. 

Time profile of the deflection due to the 
ringload at the origin. 

x=0 
e = ?(l-v2) p 

E’h’ ’ 
p, = Ringload 

Fig. 7 
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ti 

IO 

8 

6 

Uniform heating of a sandwich cylinder in 
addition te a ringload. The visceelastic 
core has temperature dependent preperties. 

Longitudinal profile ef the transverse 
deflectien duo te the ringlsad at the 
time f=O.lt. 

0 I I 
0 0. I 0.2 0.31 0.4 x 

a 

Fig. 8 

p = 2(1-v*] p 
0 E’h’ ’ 

% = Ringload 



a 

aT 

1 

m. 
1 

n. 
1 

P 

'i 

S 

t 

U i 

U 

V 

W 

X 

Y 

z 

List.of Symbols 

radius of cylinder 

heated length of cylinder 

length of cylinder 

surface couples 

direction cosine at the boundary 

variable in Laplace space 

surface loads 

contour coordinate 

also: variable in Fourier space 

time 

displacement generally 

displacement in x-direction 

displacement in e-direction 

displacement in z-direction 

longitudinal coordinate 

second plate coordinate 

transverse coordinate 

A 



cij material constants of orthotropic media 

D 2 Gx ho-Q,‘lq 
E’h’ 

E' ," Young's modulus of the facings 

EZ transverse compression modulus of core 

also: elastic moduli of standard solid 

G’ ,I’ shear modulus of the facings 

G 
x,8 

transverse shear modulus in the core 

Mi 2rr?; (I-Y,‘Yy:) /I% 

P 
i 

sl part of the surface where the stresses are prescribed 

T temperature 

Tm T'+T" 

T T' -T" 

Ti traction at the boundary 

TO 
reference temperature 

U strain energy 

V volume 

W external work 
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4.j 

9 

x 

4J 
. . . 

coefficient of linear temperature expansion 

also: angle of opening of the cylinder 

pseudo temperature 

ratio of the extensional stiffnesses of the facings 

ratio of shear stiffness to extensional stiffness 

Kronecker symbol 

strain tensor 

dimensionless variable in the Fourier space 

also: viscosity of dashpot 

circumferential coordinate 

third term in the expansion for w 

ratio of heated length to radius of cylinder 

Lagrange multipliers 

Poisson's ratio 

reduced time 

ratio of core thickness to radius 

also: relaxation time of standard solid 

second term in the expansion for u 

also: shift function for a thermorheologically simple material 

second term in the expansion for v 

second term in the expansion for w 

indicates that displacement depends on all 3 coordinates 

also: indicates that stress resultant is expressed in terms of the 

displacements 
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9 
. . . 

11 
. . . 

* . . . 

h 
. . . 

-. . . 

1 . . . 

2 . . . 

m . . . 

upper facing 

also: indicates integration variable when with time or temperature 

lower facing 

refers to Laplace space or Fourier space 

indicates that a function is expressed in reduced time 

indicates a prescribed function 

indicates sum of 2 ratios 

also: quantity in x-direction 

indicates difference of 2 ratios 

also: quantity in S-direction 

mean value 

(i) . . . mean quantity of i-th order 

. . . 
C core 

. . . 
0 ring quantity (load or temperature) 

Some of the foregoing symbols are used in a different meaning for the 

two examples. Since they are clearly defined and only temporarily introduced 

the reader will not encounter any ambiguities. 
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